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10)  Causality Check of LTI Systems Using
      the Impulse Response

•  Recall:  A LTI system is said to be causal if the
    output y(n)

•  Goal:  Develop the condition for an LTI system
    to be causal in terms of  h(n)

•  Proof:  Define 2 sequences x1(n) and x2(n) so
  that  x1(n) = x2(n)    n  n0

– system outputs:

y1(n) =

         =

y2(n) =

         =
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11)  LTI Systems and Linear Difference
        Equations

•  An important subclass of LTI systems is
    characterized by a linear difference equation
    of the form:

y(n) =

       (1)

LTIx(n) y(n)

 • Input/output relationship may be represented by a
block diagram
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• Example: 
       y(n)=b0x(n)+b1x(n-1) + b2x(n-2)
      y(n)=a1y(n-1)+a2y(n-2)+b0x(n)+b1x(n-1) + b2x(n-2)
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12)  Impulse & Step Response and Difference
        Equation

•  Recall that

LTI y(n)

Example:  You are given the I/O relationship to a system

� � � �0.6 ( 1) 2y n y n x n� � �

Observation: The only thing we need to know about the
system to compute the output is h(n)

• Compute and plot the impulse response h(n)
• Compute and plot the unit step response 
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13)  LTI Systems and Initial Condition Response

LTIx(n) y(n)

• Definition: The initial condition (IC) response of a LTI
system is the part of the response caused by initial
conditions (sometimes called the “zero-input response”

• Why is the IC response important ?
          it plays a role in evaluating the stability of the system 

• Definition: The LTI system is said to be stable if the IC
response approaches 0 as n ��
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• Example: y(n)=ay(n-1)+x(n)  with y(0)=K

• Recall:
    The LTI system is said to be stable if the IC response
approaches 0 as n ��
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• Example: y(n)=0.6y(n-1)+2x(n)  with y(0)=1
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• IC response and generic LTI IO relationships

� � � � � � � � � �1 01 Ny n a y n a y n N b x n b x n� � � � � � � � �
�

� � �

• Recall:
    The LTI system is said to be stable if the IC response
approaches 0 as n ��
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•  Special case for the solution when the characteristic
    polynomial has multiple roots.

Assume the characteristic equation has a root r1 of
multiplicity L and the other roots are distinct

� � � � � � � � � �1 01 Ny n a y n a y n N b x n b x n� � � � � � � � �
�

� � �

  Given the IO relationship:

Resulting characteristic equation is of the form:
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• Example: y(n)=-0.3y(n-1)+0.4y(n-2)+0.5x(n)+0.5x(n-1)
 y(-1)=y(-2)=1
   Compute: 

1) the characteristic equation
2) the characteristic roots
3) the stability condition of the system
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• How to check that the solution is valid ?
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14)  Linear Difference Equation and Total
Solution

•  Total solution calculation

– Procedure to compute the solution to (1) is
   similar to solving differential equations

LTIx(n) y(n)

Solution of (1) when x(n) = 0 Solution of (1) for x(n) � 0

 – complementary solution –      – particular solution –

Solution depends on the Solution depends on the
initial conditions input only

y(n) = yc(n) + yp(n)

� � � � � � � � � �1 01 Ny n a y n a y n N b x n b x n� � � � � � � � �
�

� � �

Constants computed by using the total solution
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a)  Complementary Solution

•  Equation to solve for n � 0

� � � � � �1 1 0Ny n a y n a y n N� � � � � ��

    initial condition y(–1) … y(–N) given

•  First assume yc(n) = rn

� � � � � �1 1c c N cy n a y n a y n N� � � � � � �

�

�

    �    General form of complementary solution is
           is given by:

yc(n)=
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b)  Particular Solution

•  Equation to solve

� � � � � � � � � �1 01 Ny n a y n a y n N b x n b x n� � � � � � � � �
�

� � �

•  Pick x(n) and assume that particular solution is
    of the same general form as the specified x(n)

Shape of x(n) Shape of particular
solution

C1 C2

Kn K1n+K2

K1an K2an

Kancos(n�) K1 ancos(n����)

Kcos(n�) K1 cos(n����)
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Example:

Find the total solution for n � 0 for

� � � � � � � �1 6 2y n y n y n x n� � � � �

a)  When x(n) = 8u(n) and initial conditions
      y(–1) = 1, y( –2) = –1

b)  When x(n) = 2n u(n) with y(–1) = 1, y( –2) = –1
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• Example: Find the solution for n � 0 to

� � � � � �0.5 1 0.4 2 0y n y n y n� � � � �

when initial conditions are y(–1) = –0.8; y(–2) = 0.5
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Find the total solution for n � 0 for

� � � � � �1 0.5 2 0y n y n y n� � � � �

initial conditions  y(–1) = -0.8, y( –2) =0.5

Example:
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Find the total solution for n � 0 for

� � � �2 ( ) ( 1)y n y n x n x n� � � � �

initial conditions  y(–2) = -10, y( –1) =0, x(n)=10u(n)

Example:
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15)  Impulse Response and Difference
        Equation

•  Recall that

Example:  Compute the impulse response to the
     system

LTI y(n) = h(n)

� � � � � � � �1 6 2y n y n y n x n� � � � �

with x(n) = 8u(n);  y( –1) = 1;  y( –2) = –1
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16)  System Output Computation Using
        MATAB

•  Given

•  Pack coefficients in two vectors:

A = [

B = [

•  Output vector

Example:  Assume you want to average 10 input
     data points

� � � � � �

� � � �
1

0

1 N

L

y n a y n a y n N

b x n b x n L

� � � � � �

� � � �

�

�

� � � � � �� �0 , 1 , ,y y y y k�

� � � � � �� �0 , 1 , ,x x x x k�

is given by

y =

to input vector

� � � � � �� �
1 9

10
y n x n x n� � � ��

A =

B =


